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INTRODUCTION

Diffraction experiments at high pressures provide measurement of the variation of the
unit-cell parameters of the sample with pressure and thereby the variation of its volume (or
equivalently its density) with pressure, and sometimes temperature. This last is known as
the ‘Equation of State’ (EoS) of the material. It is the aim of this chapter to present a
detailed guide to the methods by which the parameters of EoS can be obtained from
experimental compression data, and the diagnostic tools by which the quality of the results
can be assessed. The chapter concludes with a presentation of a method by which the
uncertainties in EoS paramefers can be predicted from the uncertainties in the measurements
of pressure and temperature, thus allowing high-pressure diffraction experiments to be
designed in advance to yicld the required precision in results.

The variation of the volume of a solid with pressure is characterised by the bulk
modulus, defined as K =—VaP/aV. Measured equations of state are usually parameterized
in terms of the values of the bulk modulus and its pressure derivatives, K’ =0K /dP and
K"=9d"K/oP?, evaluated at zero pressure. These zero-pressure (or, almost equivalent, the
room-pressure values) are normally denoted by a subscript “0,” thus: K, :—V(,{BP/BV)PZ‘],
K, =(0K/aP), , and Kg’:(azK/aP’)H. However, throughout this chapter a number of
notational conventions are followed for ease of presentation. Unless specifically stated, the
symbols K” and K” (without subscript) refer to the zero-pressure values at ambient
temperature, all references to bulk modulus, K, and its derivatives K’, K” and
oK, /0T refer to isothermal values and all compression values, 1 = V/V,, and variables such
as finite strain f derived from them, are similarly isothermal quantities. The relationship
between the isothermal bulk modulus, more generally denoted K, and the adiabatic bulk
modulus K that describes compression in a thermally closed system (at constant entropy)
is K;= K, (I+ayI) where o, is the volume thermal expansion coefficient and 7 is the
Gruneisen parameter,

EOS FORMULATIONS

The derivation of EoS for solids is dealt with in detail in a number of recent texts (e.g.
Anderson 1995, Duffy and Wang 1998}, and will not be repeated here. It is sufficient to
note that there is no absolate thermodynamic basis for specifying the correct form of the
EoS of solids. Therefore, all EoS that have been developed and are in widespread use are
based upon a number of assumptions. The validity of such assumptions can only be judged
in terms of whether the derived EoS reproduces experimental data for volume or elasticity.
Of the many developed EoS (see Anderson 1995) only the ones commonly used to fit
P-V and P-V-T dafa are presented here. The further constraints on EoS, such as
0.K ;= constant, that can be applied at temperatures in excess of the Debye temperature
(e.g. Anderson 1995} are not considered here because most experimental datasets include
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data from lower temperatures.
Isothermal EoS

Murnaghan. The Murmaghan BoS (Murnaghan 1937) can be detived from the
assumption that the bulk modulus varies linearly with pressure, which results in a
relationship between P and Vof:

=K
K'P
V=F|1l+H——
%) ®

5[

Tt is found experimentally that this EoS reproduces both P-V data and the correct
values of the room pressure bulk modulus for compressions up to about 10% (ie. n =
V/V,> 0.9, Fig. 1). The simple functional form of this EoS that allows algebraic solution
of P in terms of V and vice-versa has led to its widespread incorporation into
thermodynamic databases used for calculating metamorphic phase equilibria (e.g. Holland
and Powell 1998, Chatterjee et-al. 1998). Note that the frequent choice of fixing X7 = 4
(e.g. Holland and Powell 1998) to obtain a two-parameter Murnaghan EoS in terms of just
V, and K, has no basis in its derivation. On the contrary, K = 4 is obtained from
truncation of the Birch-Murnaghan finite strain EoS to second order.

Or as:
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Figure 1. Volume-pressure data for quartz.
The solid fine is a fit of the Birch-Mumaghan
3rd order EoS (with parameters given in Table
1) to the data points from Angel et al. (1997).
The compression predicted by a Murnaghan
EoS with the same values of Ky and X {dashed
line) deviates significantly from the observed
data for n < 0.90. This demonstrates that values
of K, and K’ are not transferable between these
two EoS. The Mumnaghan EoS fitted to the data
(Table 1) is indistinguishable in this plot from
the Birch-Mumaghan 3rd order EoS,
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Birch-Murnaghan. Finite strain EoS are based upon the assumption (e.g. Birch
1947) that the strain energy of a solid undergoing compression can be expressed as a
Taylor series in the finite strain, £ There are a number of alternative definitions of f, each
of which leads to a different relationship between P and V. The Birch-Murnaghan EoS

(Birch 1947) is based upon the Eulerian strain, f, = [(Vo vy - 1]/ 2., Expansion to fourth
order in the strain yields an FoS: '

si2 3, 3 o , , 353 2
P=3K, f{1+2f;) [1+5(K —-4)f, +E(K0K +H{K -4{K —3)+~9—)f5] (3)
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If this EoS is truncated at second order in the energy, then the coefficient of Je must be
identical to zero, which requires that K~ has the fixed value of 4 (higher-order terms are
ignored). The 3rd-order truncation, in which the coefficient of 12 is set to zero yields a
three-parameter EoS (with ¥, K, and K”) with an implied value of K given by (Anderson
1995):

K”=I_<—j((3-K’)(4—K’)+~39—5) )

Natural strain. Poirier and Tarantola (1998) developed an EoS based upon the
“natural” or “Hencky” measure of linear strain, Jy={ifl,) which, for hydrostatic
compression, may be -wtitten as Jy=Y3In(¥/¥,). This yields a pressure-volume
relationship expanded to fourth order in strain of

R e Y R e )

Examination of Equation (5) shows that truncation of this “Natural strain” FoS at
second order in the strain implies a value of K = 2, different from that of the 2nd-order
Birch-Murnaghan EoS. For truncation at third order in the strain, the implied value of K7 is
given by:

K= %[1 +(E-2)+ (K -2)] (6

0

This value for K*is normally substantially larger than that implied by the truncation of
the 3rd-order Birch-Murnaghan EoS (Eqn. 4), and this may result in significantly different
values of K, being obtained from fits of the two equations to the same P-¥ data.

Vinet. The finite-strain EoS do not accurately represent the volume variation of most
solids under very high compression ( < 0.6), so Vinet et al., (1986, 1987a) derived an
EoS from a general inter-atomic potential. For simple solids under very high compressions
the resulting Vinet EoS provides a more accurate representation of the volume vatiation
with pressure:

P=3K09f7f“)exp(§(1<'—l)(lﬁﬁ)) @

-
where £, = (V/VD)I ™. There is no theoretical basis for truncation of the EoS to lower order,

although examination of Equation (7) shows that such truncation yields an implied value
for K’ of 1. The value of K”'implied by Equation (7) is given by Jeanloz {1988) as:

P52 ’
NG e
K, i\ 2 2/ \36
Expansions of the Vinet EoS to include a refineable X have been proposed but are
not required to fit most experimental P-¥ and P-V-T data of simple solids. Despite being
often called a “Universal EoS™ (e.g. Vinet et al. 1986, 1987a} it should be noted that the

Vinet EoS is not intended for materials with significant degrees of internal structural
freedom such as bond-bending (Jeanloz 1988).

Thermal equations of state

From an experimental viewpoint, the simplest method for evaluating P-V-T data is to
use an isothermal FoS, such as those given above, and to consider the parameters ¥, and
K, as being the material properties at P = 0 but at elevated ternperature T. The high-
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temperature value of the zero-pressure volume is:
T
Vo (Ty= V(T )exp Jo( T)T ©
7

which is derived by integration of the thermodynamic definition of the thermal expansion
coefficient a{7)=F"'9¥/dT. As for the compression of solids, there is no general
thermodynamic theory that specifies the form of the function «(T), e.g. Krishnan et al.
(1979). At the lowest level of approximation o{T) can be considered a constant, or to vary
with linearly with temperature as oT) = a + 5T, but higher-order terms can be employed
when necessary (e.g. Saxena and Zhang 1990). A summary of frequently-used
formulations is provided by Fei (1995).

Within the uncertainties of most current experimental measurements, the variation of
bulk modulus with temperature can be considered to be linear;

JaT

in which 7, is a reference temperature (usually 298 K). This formulation, combined with
use of a variable K”in the associated isothermal EoS, includes all second derivatives of the
volume with respect to the intensive variables P and T, and is usually sufficient to fit most
experimental P-V-T datasets collected from room temperature up fo ~1000 K. The
derivations of thermal EoS more applicable to higher-temperature datasets are given by
Duffy and Wang (1998). A simplified extension of the Vinet EoS to variable temperature
developed by Vinet et al. (1987b) is only applicable above the Debye temperature.

K(T)= Ko(mﬂT%)(a—K] (10)

Cell parameter variation

While many experimental P-V data sets are fitted with one of the isothermal EoS
described above, it is not unusual fo find the cell parameter variation with pressure fitted
with a polynomial expression such as a¢=gq, +a,P+4,P*, or even with a simple linear
relationship, While such an expression may indeed describe low-precision data adequately
within the error bars, it is both unphysical and inconsistent with use of an EoS for the P-¥
data. A linear expression implies that the material does not become stiffer under pressure,
while a quadratic form will have a negative coefficient for P2, implying that at sufficiently
high pressures the material will expand with increasing pressure. A consistent alternative is
provided by linearization of any of the isothermal EoS described above through the
substitution of the cube of a lattice parameter for the volume in the equations. The value of
“linear-K," obtained from fitting the isothermal equation is then one-third of the inverse of
the zero-pressure linear compressibility 3, of the axis, defined as 8, =1,"(9//dP),_, in which
I, is the length of the unit-cell axis at zero pressure.

In the general case, the stress applied to a crystal is a second-rank tensor, denoted ©.
The application of such a stress gives rise to different changes in length, and thus different
strains, in different directions of the crystal (unless it is cubic). If the strains remain linearly
dependent upon the applied stress (i.e. in the Hooke’s law regime) then they also comprise
a second-rank ténsor, denoted €. The general relationship between the stress and the strain
is given by the tensor equation e, =s,0, (e.g. Nye 1957) in which s is the elastic
compliance tensor (elastic modulus tensor in English). In the case of hydrostatic
compression there are no shear stresses and thus the off-diagonal components of the stress
tensor are zero, while the diagonal terms are equal to the applied pressure; o, = -P for &=/
and 6, = 0 for & # /. The stress-strain relationship for hydrostatic compression therefore
becomes €, = —Ps,, . The fractional volume change of the crystal under stress is given by
the sum of the diagonal terms of the strain tensor, thus AV/V =g, =~Ps,,,, from which it
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follows that the isothermal volume compressibility is s,,. If the individual terms of the
compliance tensor are written out in matrix notation, the relationship between the isothermal
elastic compliances of the crystal and the isothermal bulk modulus is obtained: K =
(81, + 55+, +25,, +25,, *+25,,)". This relationship is true for all crystal systems,

The linear compressibility, B, in any direction in a crystal defined by its direction
cosines [ is B, =, 11, from which the relationships between the linear compressibilities of
the axes and the individual elastic compliances can be obtained (see Nye 1957 for details).
For crystals with higher than monoclinic symumetry the definition of the axial
compressibilities fully describes the evolution of the unit-cell with pressure. The same is
true for temperature and thermal expansion. But for monoclinic crystals one unit-cell angle
may change, and in triclinic crystals all three unit-cell angles may change, The full
description of the change in unit-cell shape in these cases must therefore include the full
definition of the strain tensor resulting from compression and its visualisation as a strain
ellipsoid (Nye 1957). A computer program, originally written by Ohashi (1972) is available
(see Appendix) to calculate the components and principal axes of strain tensors. The
calcnlation method of Ohashi (1972), further developed by Schlenker et al. (1975) and
Jessen and Kiippers (1991), is explicitly based upon a finite difference approach. The
strain is evaluated from the change in lattice parameters between one data point and the
next. Thus the resnlting strain tensor represents an average strain over this interval mn
pressure or temperatuse. This is a sound approach for crystals of orthorhombic symmetry,
or higher, because the orientation of the strain ellipsoid is fixed by symmetry. But for
triclinic and monoclinic crystals the strain ellipsoid may rotate with changing P or T. The
finite difference calculation of strain then represents an average not only of the magnitudes
of the principal axes of the strain ellipsoid, but also an average of their orientation over the
finite interval in P or T. An alternative approach which avoids this problem and employs
the calculation of the continuous derivatives of the unit-cell parameters with respect to T
(or P) has been developed by Paufler and Weber (1999),

FITTING EQUATIONS OF STATE
Least-squares

When fitting EoS one of the variables has to be chosen as the dependent variabie.
From an experimental point of view, one often views volume as the dependent variable that
results from the choice of a value of the independent variables pressure and temperature.
On this basis one would expect to fit volume to pressure and temperature in order to
determing the parameters of an FoS. However, it is often the case that experimental
uncertainties in pressure are greater than, or at least comparable in magnitude with, the
uncertainties in compression n, while uncertajnties in temperature are much smaller. The
choice between pressure and compression as dependent variable 'is therefore not
immediately clear. However, all of the equations of state described in the previous sections
can be written in terms of pressure being a function of compression and
temperature, P= f{n, 7}, whereas their formulation in the formm= £ (P,T) is not usually
straightforward. For this reason it is normal to fit EoS “in  the form
P=f(n,Thor P= f(V,T). . '

If the experimental uncertainties in the data set are uncorrelated and normally
distributed, the best estimate of the EoS parameters (e.g. V,, K, etc.) can be obtained by
the method of “least-squares.” The presentation of the details of the impletnentation of the
least-squares method is not appropriate here. For details the reader is recommended to
consult a standard statistics text, or the very clear exposition of theory and methodologies
given by Press et al. (1986). The presentation here will be restricted to those aspects
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especially relevant to the fitting of EoS data, and the interpretation of the results so
obtained.

Strictly speaking, a normal distribution of uncertainties only occurs when a large
number of data are considered; “large” meaning that the number of data, n, is large
compared to n'”. This is not the case for most compression experiments in which # is of
the order of 10-20, Therefore care has to be taken fo correctly estimate uncertainties and to
exclude outliers in the data-set that would otherwise bias the least-squares refinement, Most
high-P and high-P,T data are collected in a serial fashion, so serial correlation of errors
between data points becomes systematic error which can only be eliminated by careful
design of both experiment and instrument. In practice, it is found that these critical
assumptions are not sufficiently violated in fitting EoS to invalidate the use of the least-
squares method to fit compression data,

The least-squares solution of the EoS can be formalised as being the set of parameters
within the Fo8 function that minimises the weighted sum of the squares of the differences
between the observed and calculated pressures at a given volume:

| . :
X?. = m;wz(gbu WEOS(Vabs,i’ T;bu)) (1 1)
where n are the number of data points each of which is assigned a weight w,, and m is the
number of parameters being refined. If the EoS can be expressed as a linear combination of
separate Tunctions of ¥ and 7, then the minimum value of % can be found directly by
inversion (e.g, Eqn. 29, below). For non-linear problems, such as the direct refinement of
K, and K”in most EoS, the minimum value ofy?, cannot be obtained directly, but must be
approached in an iterative manner. For this, the derivatives of the dependent variable, P,
with respect to each of the refined parameters (e.g. dP/oV,,0P/oK,,0P/dK") must be
calculated in each least-squares cycle. Such derivatives can be calculated either analytically
or numerically. In the latter case it is important to remember that their accuracy will
determine in part the stability and rate of convergence of the non-linear least-squares
process towards the minimum value of %2 .

Assignment of weights. In order for the least-squares refinement of the EoS to
yield reasonable estimates for both the EoS parameters and their uncertainties, it is
important that the correct weighting scheme is applied to the data poinfs in evalvating
Equation (11). In general, w, = 67, so the “correct” weighting scheme is that which reflects
the true variance, o7, of each data point which is comprised of a contribution from the
uncertainties in the pressure, temperature and volume measurements. Each of these
uncertainties may in turn include contributions estimated from the mis-fit of measured data,
an estimate from repeat measurements of the same datum, and an estimate of the long-term
stability of the instrument. Thus, an individual measurement of a unit-cell volume by X-ray
diffraction will have an uncertainty derived from the fit of the unit-cell parameters to the
diffraction data itself. But this may not represent the true uncertainty. For example, it is
well known that the uncertainties in cell parameters and thus volumes derived from Rietveld
or Le-Bail methods of fitting powder diffraction patterns significantly underestimate the
true uncertainties (e.g. Young 1993). Improved estimates of the uncertainties can always be
obtained by duplicate measurements of the diffraction pattern. Contributions from longer
term, instrumental instabilities should be determined over the time-scale of the experiment
by duplicate measurements of a standard material combined with measurement of the
sample at room conditions in the high-pressure apparatus both before and after the high-
pressure experiment. These additional uncertainties can often be reduced to a scaling factor
for the variance obtained from an individual measurement (e.g. Prince and Spiegelman
1992b). Thus, the estimate of ¢ obtained from an individual measurement may generalty
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be replaced by ko’, where k is some empirically determined constant for a given
experimental configuration.

If the EoS parameters are to be determined through the minimisation of %% (Eqn. 11)
then the experimental uncertainties in pressure, volume and temperature of a datum must be
combined in to a single estimate of the uncertainty of the datum, expressed in terms of the
dependent variable, pressure. If the uncertainties in pressure, volume and temperature of a
given datum are independent then the combined effective uncertainty in the pressure as the
dependent parameter can be obtained as:

oi=ait cf,.[(g—i)r]z + "?-[[g_gy]z (12)

This propagation of uncertainties is known as the “effective variance method” (Orear
1982). 1t should be noted that there are a number of technical points involved in the
derivation of Equation (12) that may affect the estimates of both the values of the
parameters and their uncertainfies obtained by least-squares. First, it is assumed that the
partial derivatives in Equation (12) are constant over the pressure interval corresponding fo
o, and &, which is reasonable this pressure interval is small compared to the bulk modulus
of the material. Secondly, although the values of ¢ obtained through Equation (12) are
correct, the derivatives are incorrectly calculated at the experimentally observed values of
V and T rather than at the values estimated by the least-squares fit of the EoS. This leads to
a slight over-estimate of the parameter uncerteinties (Lybanon 1984, Reed 1992), although
the effect is usually insignificant for a slowly varying function such as an EoS with simall
experimental uncertainties in the data.

Through the use of thermodynarﬂic identities {e.g. Anderson 1993), Equation (12)
reduces to:

o’ =0’ +0, (%) + o {ok) (13

where ¢ is the volume thermal expansion coefficient and X is the isothermal bulk modulus
of the sample at the temperature and the pressure of the measurement, If the parameters K
and o are being refined, the refinement program must recalculate the values of o, and thus
the weights applied to each data point, at the beginning of each least-squares cycle.

The significance of each of the terms in Equation (13) that contribute to the overall
uncertainty in a data point can be examined in the context of a material with a bulk modulus
of ~100 GPa, and a volume thermal expansion coefficient of ~10° K. For laboratory-
based single-crystal diffraction experiments at ambient temperature the uncertainties in
pressure are of the order of 0.01 GPa, yielding o} =10~ Gpa’. If temperature fluctuations
are of the order of 1 K or less, then the last term in Equation (13) is of the order of
10° GPa® and can be safely ignored. In diffraction experiments at simultaneous high
pressures and temperatures, the pressure uncertainty might be of the order of 0.03-0.05
GPa, making o} >10~ Gpa’, in which case temperature uncertainties of the order of 10 K
would still not contribute significantly to the total variance, On the other hand, even a
precision of 0.0001 in &,/V (i.e. 1 partin 10,000) will also contribute 10° GPa® to the
total variance, indicating that confributions from volume uncertainties should always be
included. In lower precision measurements the volume uncertainties may even dominate the
total uncertainty,

If pressures have been determined through measurement of the volume of an internal
diffraction standard (e.g. Miletich et al., this volume) the uncertainties in pressure and
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volume may not be independent because the volumes of both sample and standard may be
affected in the same way by the same instrumental fluctuations; monochromator movements
leading to wavelength changes are a good example of this sort of problem. In such cases
the covariances between P, ¥ and T should be added to Equation (12}, although these are
often difficult to assess. The practical recourse is o omit the covariances, use Equation (12)
as it stands, and to treat the results of the least-squares refinement with caution. Diagnostic
statistics such asX; (sce below) can be used to test whether the estimated uncertainties
remain reasonable over a series of experiments.

The assignment of an uncertainty to a room pressure measurement of the volume of
the sample is especially important because this datum is at one extreme of the data-set and
therefore exerts a higher leverage or influence (e.g. Prince and Spiegelman 1992a) on the
determination of both ¥, and K, than data in the middle of the experimental pressure range.
In most cases, and certainly in diamond-anvil cell diffraction experiments, the room-
pressure volume can be measured by exactly the same methodology as the high-pressure
data. The uncerfainty in this datum then comprises the experimentally determined
uncertainty in the volume, combined with that of the uncertainty in ambient pressure. A
reasonable estimate of the latter might be of the order of 107-10°% GPa (1 to 10 mbar) in
10™ GPa (1 bar).

Goodness of fit. The weighted chi-squared, x., (Eqn. 11) is not only the function
minimised by the least-squares procedure, but it also provides a measure of the guality of
the fit once the least-squares process has reached convergence. If the uncertainties in the
data are normally distributed then a value of % = 1 indicates that the uncertainties have
been correctly assessed, that the EoS represented by the refined parameters fits the data,
and that the refinement has converged. In such a case it is found that the fitied EoS passes
through the +1¢ error bars of 68.3% of the data points, 95.4% of the +20 error bars, etc. :
A value of %2 < 1.0 has no statistical significance and does not represent a better fit. :
It may, however, suggest that the uncertainties of the data have been overestimated. A
value of y2 > 1.0 indicates that the fitted EoS does not represent the entire data-set and its
uncertainties. This may arise from either the EoS medel being incorrect in some way, the
uncertainties of the data being underestimated, or a few data points having wrong values.
Such outliers can be identified by comparing the misfits of individual data points (P —P !
with their estimated uncertainties. Those data with the largest values of [P, ~P_ /o are
termed “outliers”. If there is a sound experimental reason for doing so (e.g. non-
hydrostatic pressure conditions), the outliers may be excluded from subsequent fitting of
the EoS, in which casey’, will decrease. But, the denominator r—m in the expression for
will also decrease, so exclusion of data points that are not outliers may be indicated by a
subsequent increase in 2. Misfit of the EoS may also be due fo a parameter being fixed to
an inappropriate value when it should be refined; the addition of a parameter to the
refinement will always reduce the total misfit to the data. But, becausey; includes the
number of degrees of freedom, n-m, of the fit, if the additional parameter does not
significantly improve the fit to the data, y}, will increase because #—m will have decreased
by 1. A proper statistical assessment of the significance of the addition of a parameter to a
refinement is provided by the “F-test” (e.g. Prince and Spiegelman 1992a).

Variances and covarignces. At convergence of the least-squares refinement, the
varance-covariance matrix, V*, of the refined parameters can be calculated from the
normal-equations matrix used in the non-linear least-squares refinement (e.g. Press et al.

1986, Prince and Boggs 1992). The definition of V* for the simpler case of lincar-least-
squares is given below in Equation (30). The diagonal elements of the variance-covariance
matrix, V3, are estimates of the variances of the refined values of the EoS parameters. i
'Thus the estimated standard deviation of the i" refined parameter is X V. provided that the ,
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refinement is converged and that ¥2 = 1. If, at convergence ¥® > 1 but the model is believed
to be correct, then the larger value of %2 is usually attributed to an under-estimate of the
uncertainties of the experimental data. Then it is normal practice to multiply all of the
elements of the variance-covariance matrix by y? (e.g. Press et al. 1986, Prince and
Spiegelman 1992b). This is equivalent to multiplving the uncertainties of all of the
experimental data points by a factor V2. A word of caution is necessary here. Many least-
squares refinement programs rescale the variance-covariance matrix automatically, and
many also do so irrespective of the value of 2. If % <1 there is no argument (see above)
for making the multiplication which, if performed, will make the reported parameter esd’s
smaller,

The off-diagonal elements of the variance-covariance matrix such as V! are the
covariances of the parameters a, and &, They measure the degree to which the values of two
refined variables are correlated, Note that the covariance of two refined parameters has the
units of the product of the two parameters themselves; the covariance of, for example, ¥,
and K, could be in units of A" GPa. The absolute value of the covariance therefore
depends on the units used for the EoS parameters. A more understandable measure of the
degree to which two parameters are inter-dependent is provided by normalising the
covariance by the variances of the parameters to obtain a correlation coefficient;

Corr(i,j)= _,__%____ (14)
A

The correlation coefficient always has a value between -1 and +1, although it is often
multiplied by 100 and expressed as a percentage. A value of zero indicates that the two
parameters are completely uncorrelated, and thus are determined completely independently
of one another. If the correlation coefficient is non-zero, then the two parameter values are
partially dependent upon one another. A positive value indicates that the data can be fitted
almost as well by increasing both parameters simultaneously, a negative value that
increasing one parameter and decreasing the other will lead to almost as good a fit. Non-
zero values of covariances, and thus correlation coefficients, therefore increase the total
uncertainty in the parameter values beyond that derived from the variances of the individual
parameters alone. The effect of covariance is best visualised through use of confidence
ellipses, whose construction is illustrated by a worked example in a later section of this
chapter. In the timit, the correlation coefficient can have values of +1 or -1. Such values
indicate that the two parameters are completely correlated, and cannot be determined
independently from the data because an infinite number of pairs of values of the parameters
provides an equally good fit to the data. In such a case their values cannot be uniquely
determined by the least-squares process and, indeed, most least-squares programs will
terminate under such circumstances because the least-squares matrix becomes singutar and
therefore cannot be inverted.

It is not uncommen to fit an EoS in an algebraic form in which the refined parameters
a; are not the parameters such as K, and K’ that we require, but some combination of them,
If we denote this second set of desired parameters b,, then we will have a set of equations
linking them to the g, through which the least-squares estimates of their values may be
obtained directly. The variances and the covariances of the transformed parameters b, are
then given by the components of the matrix V® which may obtained from the variance-
covariance matrix of the ¢, set of parameters through:

wrspe(2]2)

da, 871;
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Note that the existence of this transformation implies that, provided the weights used
in the least-squares procedure were also transformed correctly and that an equivalent set of
parameters are refined in each case, the same refined parameters and the same esd’s will be
obtained from a fit of a particular BoS irrespective of the way in which the EoS is
formulated. The transformation can also be used to calculate the uncertainties in Kand K’ at
higher pressures, as illustrated below,

Practical considerations

It is important to bear in mind that the formulation of all EoS means that their
parameters can be highly correlated, and therefore care has to be taken in choosing which
patameters to refine and which to fix. Such decisions influence the final values of the
refined parameters, so care must also be taken in their interpretation. In this section a
practical guide to addressing these issues in a conservative manner is presented.

Refinement strategy. Examination of the equations of all isothermal EoS (Egns. 1-
8) shows that they are non-dimensional; they can all be written in terms of P/K and ViV,
Therefore K, and ¥, have the same units as the experimental pressures and volumes
respectively and are the scaling parameters of an EoS. In particular, ¥, is a quantity that is
dependent upon the calibration of the technique used to measure the volumes. For example,
in single-crystal diffraction, the algorithms used to determine the Bragg angles of
reflections often lead to a strong dependence of unit-cell volume on the Bragg angle (see
Angel et al., this volume). In monochromatic angle-dispersive powder diffraction, the
volumes obtained from fitting the powder pattern will depend upon the alignment of the
monochromator and the value of the resulting X-ray wavelength. Similarly, in energy-
dispersive diffraction the volume is dependent upon the energy calibration of the detector.
Tn all of these cases the volumes measured at high pressures may be on a different scale
from some high-accuracy value of I, determined by another technique. As demonstrated
by Hazen and Finger (1989), the fixing of ¥, to such an inappropriate value can lead to
incorrect estimates of the other EoS parameters being obtained from the least-squares
refinement to high-pressure volume data.

The parameters ¥, and K, thus have the largest influence on the calculated pressure
and should always be refined. For isothermal data sets the first stage of refinement should
therefore be the refinement of ¥, and K, alone in a 2nd-order EoS, with the next higher
order term, K’ set to its implied value. Then K’ is refined, along with the previous
parameters, and the significance, as measured by the change in x;, of its addition is
assessed. This process is continued until the addition of further parameters yields no
significant improvement in the fit of the EoS to the experimental data. If, at any stage, the
additional parameter results in a significant improvement in the fit, then they; value will
decrease, as will the esd’s of the parameters refined in the previous stage. And the
deviation of the refined value of the parameter from the value implied by the truncation of
the EoS to lower order will be larger than the esd of the refined parameter, If the additional
parameter does not improve the fit to the data, then y), will increase or stay the same, the
esd’s of the other parameters will increase (duc to théir correlation with the additional
parameter) and the value of this additional parameter will not deviate significantly from the
value implied by the lower-order truncation of the FoS.

A practical demonstration of this process is given in Table 1 which lists the results of
step-wise refinements of three EoS to the 23 P-V data for quartz reported by Angel et al.
(1997). All fits were performed with the program EOSFIT (see Appendix) and with full
weights assigned to each data point (Eqn. 13). The first refinement of the Birch-Murnaghan
EoS has K’ fixed at 4, the value implied by the 2nd-order truncation in strain. The large
value of 128 fory?, together with the maximum misfit, [P, P, |nae more than ten times
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Table 1. EoS parameters fitted to the quartz P-V data of Angel et al. (1997)

Voo A K,: GPa K’ K":GPa' 2 (P Pul, GPa

BM2 112.97(2) 41.5(3) [4.0] [-.0947 128 0.32

BM3 F12.981(2) 37.12(9) 5.99(5) [-.265] 0.95 0.025
BM4 112.981(2) 36.89(22) 6.26(24) -0.41(12) 0.93 0.026
NS2 112.95(5) 46.5(6) f2.0] [-0.022} 580 0.65

NS3 112982¢2)  3639(11)  691(7) [-0.825] 115 0.026
NS4 112.984(2) 36.90(24) 6.25(29) -0.39(11) 0.93 0.026
Vinet 112.981(2) 37.02(9) 6.10(4) [-0.319] 0.90 0.025
Mum, 112.981(2)  37.63(10)  5.43(4) 0] 1.57 0.033

Note: Numbers in parentheses represent osd’s in the last digit. Numbers in square brackets are the implied
values of the parameters,

larger than the esd in an individual data point indicates that this EoS does not represent the
data. Expansion of the FoS to third order reducesy! to 0.95, indicating a significant
improvement to the fit. The same conclusion would be drawn from the other indicators; the
refined value of the additional parameter K” (5.99) differs by 50 esd’s from the previously
implied value of K" = 4, the esd’s of ¥, and K, have decreased, the maximum misfit is
similar to the estimates of the uncertainties in pressure estimated directly from the
experiment, and the value of ¥ is identical to that determined experimentally, Further
expansion of the EoS to fourth order, including refinement of X, yields only a marginal
improvement iny;, because the refined value only differs marginally significantly (1.2
esd’s) from the value implied by the 3rd-order truncation of the EoS. Note also that the
esd’s of K, and K" have increased significantly in this last refinement due to their strong
correlation (93.6% and -99.2% respectively) with K. For practical purposes, therefore,
the 3rd-order Birch-Murnaghan EoS would be considered to yield an adequate
Tepresentation of the data-set.

The steps in the refinement of the Natural Strain EoS to the same data-set (Table 1) are
similar, except for the choice of termination of the refinement process. In this case further
expansion of the Natural Strain EoS to 4th order results in a significant decrease iny? from
1.15 t0 0.93 as a result of the value of K" deviating by more than 4 esd’s from the value
implied by the 3rd-order truncation (Eqn. 6).

When P-F-T data are fitted, a procedure equivalent to the isothermal case should be
followed, except that the parameter set is expanded to include temperature-dependent terms
such as the thermal expansion and the temperature variation of the bulk modulus. In order
to avoid biasing other parameters it is important to refine together all of the EoS parameters
which can be expressed as the same order of derivative of volume with respect to pressure
and temperature (Plymate and Stout 1989). Thus, the first stage of refinement should
involve V, together with the Ist-order derivatives K, and a temperature-independent
thermal expansion coefficient . The next set of parameters to add are the 2nd-order
volume derivatives, K’, dK/dT and do/dT, each expressed as a constant. The values
should only be set to zero {or implied value for X&) and not refined if refinement results in
values that do not significantly improve the fit to the data.
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Additional care must be taken in fitting a P-¥-T EoS when data from different types of
experiments are combined together, for example single-crystal compression measutements
made at room temperature with simultancous high-temperature, high-pressure powder
diffraction measurements. Then # is important to ensure that both the volumes and the
pressures from the two or more methods are on the same scale; the former is easily
obtained by dividing each separate set of volumes by the value obtained by each method at
ambient conditions, The question of pressure scales is more difficult, but is ideally
addressed by using the same material as an internal diffraction standard in all of the
experiments. It is also important to ensure that the relative weighting of the datasets is
correct, by employing Equation (13) to propagate realistic assessments of the uncertainties
of all experiments. In doing so, it is normal to find that the room-temperature compression
data and the room-pressure thermal expansion data are weighted much more heavily than
the simultancous high-P,T data. Failure to assign weights can lead to significantly different
values for the FoS parameters, as illustrated by Zhao et al. (1995).

The f-F plot. The precision with which volumes and pressures can now be
measured means that it is very difficult to obtain a useful visual assessment of the quality of
a Eo$ fit from a direct plot of volume against pressure. Nor do P-¥ plots such as Figure 1
provide a visual indication of which higher order terms such as K" and K” might be
significant in an EoS. Such a visual diagnostic tool is provided by the F~f plot, which can
be applied to any isothermal EoS based upon finite strain. For the Birch-Murnaghan EoS,
based upon the Eulerian definition of finite strain fj;, a “normalised stress” is defined as
F.=Pj3f,{1+2£ )", and the EoS (Eqn. 3) can be re-written as a polynomial in the strain
{c.g. Stacey et al. 1981). -

3K,

3K,
5 LK, —4)f +

(KK”+(K —4fK'-3)+ ) +... (16)

If the P,V data are transformed into f, and F; and plotted with f. as the abscissa a
direct indication of the compressional behaviour is obtained. If the data points all lie on a
horizontal line of constant £ then X’ = 4, and the data can be fitted with a 2nd-order
truncation of the Birch-Murnaghan EoS. [f the data lie on an inclined straight line, the slope
is equal to 3K,{K’—4)/2, and the data will be adequately described by a 3rd-order
truncation of the EoS, as is the case for the quartz data plotted in Figure 2. In a few rare
cases it is found that the value of X” differs significantly from the vatue implied by the 3rd-
order truncation, in which case the coefficient of /* in Equation (16) is not zero, and the
data fall on a parabolic curve in the - f plot (Fig. 2). In all cases, the intercept on the 7 axis
is the value of K,

For proper assesstent of an f-F plot, the uncertainties in f; and F; must also be
considered. These may be calculated by propagation of the experimental uncertainties in
compression, 1] = F/V,, and pressure (Heinz and Jeanloz 1984):

o, = %n“s”cn (17
6, = Faf(0,/P) +(6) (18)

where o’ = (717" - 5)o, /3(L-1"" )n is the estimated fractional uncertainty in f{1+2 ﬁg)m

Note that these expressions are in a different form from, but equivalent to, those in Heinz
and Jeanloz (1984). Both this uncertainty and the fractional uncertainty o/P will decrease
with increasing pressure if the absolute measurement uncertainties in pressure and volume
remain constant, resulting in the decrease in o typically observed (e.g. Fig, 2). The
relative magnitudes of the experiniental uncertainties in pressure and volume obviously



Equations of State 47

—r——T——1——1—
115 F{a}[ x =100 Gra, K=8.5 iEEEE
0p=0.01 GPa, 0, /Vp20.0001 b
110 £
e ERara o ERammEEE 105 |
44 . F
. 100 =
43 B ]
: : e eto |
2L 9% | sr00acraa=00001 |
E ! I L L
120 F(ph) -

115 10,9995 v,

41

R RN T REETE FN T

Normalised Pressure F: GPa

Normalised Pressure F: GPa

OF 110 | \E -
39 i_ K =599 _; 105 ;_ /I:%’% 7
a8 E_ K'= -9 GPa™” _ 100 —ir
. . ] 95 F
0.00 0.0f 002 0.03 004 0.05 0.000 0005 0.010 0.015 0.020 0.025
Eulerian Strain f Eulerian Strain f

Figure 2 (left). An F-f plot based on the Birch-Murnaghan EoS. The data points are the quartz
data plotted in Figure 1, with error bars calculated through Equation (18). The plots of Fy with £, for
other values of K’ and X* are also shown to illustrate that the plot yields an immediate indication of
the order of the EoS necessary to fit the data.

Figure 3 (right). (a} The relative contributions of uncertainties in P and ¥ to the uncertainty in 7.
For oy = 107'V,, and 0, = (.03 GPa the contributions are approximately equal, whercas for 6, =
0.01 GPa the uncertainty in volume (inner error bars) dominates. (b) The use of an incorrect value
for ¥, results in abnormal curvature on the F-f plot (two datasets with open symbols) compared to
the correctly calculated data (filled symbols). Note that the effect is especially severe at small values
of compression (i.e. small f}.

determine which confributes most o 0. Figure 3a shows two synthetic datasets in which
6, = 10"V, and G, = 0.01 GPa and 0.03 GPa respectively. For the smaller uncertainty in
pressure the uncertainty in F is dominated by 6,,, whereas for the larger o, the pressure and
volume uncertainties contribute about equally. In both cases o, is of the order of 0.01F
even af high pressures, whereas Equation (17) shows that the uncertainty in £, is of the
order of 6. Thus ¢, will typically be of the order of 107 to 10°Y, and is therefore usnally
ignored.

The equivalent expressions for the Natural Strain EoS are F, =PV/3f,v, =Pn/lan
and

I:M—ni Gq . (19)

S, = Fyf(0,/P) +{c") (20)

where c’:(l—{in n)')o, / is the estimated fractional uncertainty in the quantity n/Inm.
From these an analysis equivalent to that for the Birch-Murnaghan equation can be made by
reference to Equation (5).

For the Vinet EoS (Eqn. 7) the appropriate plot is of E,:ln(Pf,, J3(1- fi)) as the
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ordinate against (1— ;) as the abscissa (Vinet et al. 1986, 1987a; Schlosser and Ferrante
1988), which should yield a straight line with an intercept of In(K,) and a slope of
3(k’-1)/2. The uncertainty in (i-4) is simply 9n"¢,/3  and

op= FJ((}',,/P)2 +(an/3(nm —1))2 .

It is important to note that for any of these EoS the calculation of both F and f requires
a-priori knowledge of the value of V. Thus, while these plots provide a good visual
estimate of the order of the FoS and the parameter values, they cannot be used to determine
V,. Therefore the plots and the /F formalism should not be used to obtain values of the
other FoS parameters by refinement. Note also that use of an incorrect value of ¥,
produces an anomalous curvature in the f-F plot (Fig. 3b). Such curvature is easily
mistaken as indicating a value of K that deviates significantly from the value implied by a
3rd-order truncation of the FoS. This is alsc a graphical display of the phenomenon
discussed above and by Hazen and Finger (1989); all other EoS parameters will be biased
if ¥, is fixed to an inappropriate value.

For non-quenchable high-pressure phases ¥, cannot be measured and thus f and F
cannot be calculated from the data, Following earlier iterative approaches to obtaining an f-
Fplot of such data, Jeanloz (1981) provided an analytic method of renormalizing the data
which allows not only a plot analogous to the fF plot to be derived but also proper
estimates of the parameter uncertainties to be obtained. For P-V-T data there are two ways
in which an f~F plot can be obtained. If the data were collected as a set of isothermal series,
then cach series can be separately analysed using V(1) to obtain separate /~F plots. An
alternative approach, applicable to all P-V-T data-sets, would be to use the thermal
expansion coefficient to reduce all of the data to a common temperature and to construct a
single /-F plot.

Confidence ellipses. Tt is quite normal in fitting EoS to compression data to find
that the correlation coefficient (Eqn. 14) between K, and K’ is of the order of -0.90 to
-0.95 (i.e. -90 to -95%), indicating that the data can be fitted almost equally well by
decreasing the vatue of K, and increasing the value of K’, or vice-versa. Such strong
correlation must be considered when comparing a set of EoS parameters determined by
least-squares with independently determined values of K and K’. The extent of this
correlation is best visualised by constructing a series of confidence elfipses in the parameter
space whose axes x and y represent values of K, and X” (Bass et al. 1981). The first step
in calculating a confidence ellipse is to construct a 2x2 square matrix which consists of the
variances and covariance of K, and K’ obtained from the least-squares procedure. Then the
equation of a confidence ellipse is given by the matrix equation;

Vex Vew x
ol )

where A is a value from the chi-square distribution with 2 degrees of freedom, chosen for
the level of confidence required. Thus A = 2.30 for a 68.3% confidence level (i.e. the
equivalent of 10 for a normal distribution of a single variable), A = 4.61 for a 90%
confidence level, A = 6.17 for 95.4% confidence level (26) and A = 11.8 for 99.73%
confidence level (3G).

I we denote the inverse of the square matrix as U, and note that it is symmetric so that
its components #,, and u,, are equal, then Equation (21) can be written in quadratic form
as:

¥+ Qe xy + Uy —A=0 (22}
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This eguation can be solved for x and v to yield a set of points on an ellipse centred on the
origin of the x-y space. These coordinates must then be displaced so that the ellipse is
centred on the refined values of K, and X,

As an example of the calculation we take the refinement of the 3rd-order Birch-
Murnaghan EoS to the quartz data-set (Table 1). The refined values of X, and K’ are 37.12
GPa and 5.99 respectively, and the variances ate V., = 0.00829 and V.,.= 0,00203, The
covariance from the least-squares fit is V., = -.00399, Substituting these values into
Equation (21) yields:

0.00829 -.00399\"'(x 1908 3714Yx
A=(x,y). = 23
(x.7) [ﬁ.00399 0.00205) (y] (x )(37;4 7716}(})} 23)
Equation (22) for the 68.3% confidence ellipse in K and X’ then becomes:
1908(x — 37.12)° + 7428(x — 37.12)(y — 5.99)+ 7716(y — 5.99)" —2.30 =0 ©24)
T T T T LI
6.06 -
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L [ _
6.02 - G e 7 Figure 4. Confidence ellipses in K, and K*

for the fit of the 3rd-order Birch-Murnaghan
EoS to the quartz P-V data (Table |). Note that
the limits of the 1¢ error bars obtained from
the variances of the two parameters correspond
-  to the limits of a confidence ellipse calculated
1 with A = 1 (dashed line), not to the ellipse
| caleulated for two deprees of freedom (with A =
2.30).
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This ellipse is drawn as the solid line in Figure 4. It is strongly elongated with
negative slope, reflecting the strong negative correlation of the parameters X, and K’. The
ellipse encloses an area in the X, — K’ parameter space within which there is a 68.3%
chance that the true values of X, and K’ He. This ellipse is therefore the 2-parameter
analogue of a 10 error bar for a single parameter. Also drawn on Figure 4 are the individual
error bars for K, and K" obtained from the variances of these parameters. Note that these
are shaller than the total range of X, and K’ indicated by the 68.3% confidence ellipse for
the two parameters together. Therefore the esd 's alone do not represent the frue uncertainty
in the values of X, and K'. In fact, they correspond to the limiting values of an ellipse
calculated with A = 1 (dashed line in Fig. 4}, the value corresponding to a 68.3%
contidence level from a chi-square distribution with 1 degree of freedom (see, e.g. Press et
al. 1986). The limits of the error bars for a single parameter therefore define the range of
that parareter within which there would be a 68.3% chance of the true value being found,
independent of the value of the other parameter.

Other ellipses can be calculated in an analogous manner with the appropriate values of
A (Fig. 5). These provide a visual confirmation of the conclusions drawn from examining
the parameters of the 3rd- and 4th-order fits of the Birch-Murniaghan EoS reported in Table
1, First, the confidence ellipses of the 4th-order fit are significantly larger than those of the
3rd-order fit. Secondly, the point representing the refined parameter values for the
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3rd-order EoS lies within the 68.3% (10) ellipse for the 4th-order fit, indicating that the
addition of the K term does not significantly change the parameter values and hence the
quality of the fit. If desired, similar plots can be constructed for any pair of refined
parameters, such as K7 and K” or o and K etc,

Assessing parameter values. As for any experimental measurements, the values
of the refined EoS parameters must be examined for “reasonableness”, for which a number
of criteria may be employed. First, the esd’s of the refined parameters should be
approximately those predicted from the known experimental parameters by the method of
Bass et al. (1981) which is expanded upon below. Secondly, the refined value of ¥
should be within 1 esd or so of the measured V. Significant deviations are usually an
indication of an incorrect value for at least one of the other parameters, or a systematic
offset between the volumes measured at high pressure and the ambient pressure
measurement. In addition, for simple solids in which the compression is controlled by
central forces between atomns {e.g. the NaCl structure), it can be shown that the value of K7
must lie between 3.8 and 8 (Hofmeister 1993). But this constraint is not applicable to more
complex structures such as those whose compression behaviour is dominated by
polyhedral titting (e.g. Yang and Prewitt this volume, Ross this volume).

The accuracy of the refined parameters must be assessed by comparison with other
measurements of the same quantity. For example the K, value can be compared with values
obtained from direct measurements of the elastic constants of the material at room
conditions, K” with high-pressure elasticity measurements as well as the bounds provided
by thermodynamic identities (Anderson 1995). Such comparisons should always include
consideration of the correlation of the parameters from the EoS refinement. Consider, as an
example, two independent measurements of X, and K equally offset from the values
obtained from the refinement of the 3rd-order BM EoS to the P-¥ data. If only the single-
parameter esd’s were considered then one would say that measurements represented by
points ‘A’ and ‘B’ in Figure 4 are both consistent with the P-V data, because both lie
within the range of the individual error bars. However, when the covariance from the fit of
the P-V data is considered, it is seen that the values represented by point ‘B’ lie outside the
confidence ellipse for K, and K. Point ‘B’ is thus inconsistent with the P-¥ data but point
‘A’, which lies within the confidence ellipse, is consistent.
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Independent experimenital determinations of K, and K’ aiso include both experimental
uncerfainties and covariance between the parameters that should also be considered.
Unfortunately, estimates of the covariances of parameters are rarely available from the
literature. For example, the measurement of the elastic constants of quartz by McSkimmin
et al. (1965) yielded values of K,; = 37.12(6) GPa and K’ = 6.3, for which Levien et al
{1980) estimated an uncertainty of +/- 0.3, While the ervor bars for K, and K’ overlap with
the BM3 fit to the P-V compression data (Fig. 5), the point (K, = 37.12, K" = 6.3) lies
outside the 3¢ (99.73%) confidence ellipse for the BM3 fit, and must therefore be said to
be inconsistent with this fit to the P-V data. If, however, the data of McSkimmin et al.
{1965) included a positive correlation of K, and X’, the confidence ellipse for their results
could overlap with that of the BM3 fit. A further worked example of the comparison of
datasets from compression measurements and ultrasonic interferometry is provided by
Kung et al. (2000).

Evolution of parameter uncertainties. Thus far we have discussed the interpre-
tation and comparison of the EoS parameters at room pressure. But for direct comparison
with elasticity data measured at high pressure, for example, it is necessary fo obtain the
values of the bulk modulus and its pressure derivative(s) at high pressure. The values of
these parameters at high pressures follow directly from differentiation of the EoS (Eqns. 1
to 8). The uncertainties in the parameters can then be obtained by transforming the
variance-covariance mafrix of the least-squares fit of the zero-pressure parameters through
Equation (15). This process is mostly clearly illustrated with the Murmnaghan EoS because
the algebra is simplest. First, expressions for the parameters of interest as a function of the
room-pressure parameters and P must be derived. By the definition of the Murnaghan EoS
the bulk modulus at pressure P is K, =K, +PK;, while the high-pressure value of its
pressure derivative, K , is independent of pressure. Secondly, the derivatives of the high-
pressure parameters with respect to those at zero pressure are obtained. For the Murnaghan
EoS:

oK, | 9K,
oK, =~ 9K

oK, 3K
=0 L =1 25
oK, = oK 23)

2

The elements of the variance-covariance matrix at a pressure P, V*, is then obtained in
terms of the variance-covariance matrix, V', of the refined zero-pressure parameters by
substituting these derivatives into Equation (15), thus:

Vli:,l( = Vlu(,!( +2PVI2,K‘ + PZVEU(',K'

V;;, K~ Vig'.ro (26)
V;;.K' = VKQ,K‘ + PVI[;',K'

The uncertainties in K, and K7 are then m and V.. respectively. The sccond of the
expressions in Equation (26) shows that the uncertainty in K is independent of pressure,
which is only true for the Murnaghan EoS. Other EoS display a small variation in this
uncertainty with pressure {e.g. Bell et al. 1987). The last expression in Equation (26)
indicates that the covariance of K, and K] becomes zero at a pressure
Py ==V o[Vt At this pressure the values of K, and 7 are determined completely
independently of one another and the uncertainty in the bulk modulus is at a minimum value
(Fig. 6). The evolution of the variance-covariance matrix with pressure (Eqn, 26) results in
a rofation of the confidence ellipse for K, and X, as pressure is increased (Fig. 7). Note

especially that at pressures above P K, and K, are positively correlated.

niin?
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H the P-V data are separated by approximately equal intervals in pressure, then P, is
between 25% and 50% of the maximum pressure in the data set. Similar conclusions were
obtained by Bell et al. (1987) through numerical simulations of P-7" data. The exact value
of P, depends on the exact distribution of the data and the relative uncertainties of the data
points (see Kung et al. 2000 for another example). Nonetheless, Figure 6 demonstrates the
general truth that EoS parameters are best constrained at pressures towards the middle of
the data set, and that the uncertainties increase rapidly outside the pressure range over

which the P-V data were measured.

Choice of EoS formalism. Schlosser and Ferrante (1988) showed that the Vinet
and the Birch-Murnaghan EoS are algebraically equivalent to low orders in compression,
and thus provide equally good descriptions of the volume variation with pressure for
“small” compressions. The value of compression at which the two EoS diverge
significantly is dependent upon the value of K’. For K’ < 3.3 and K* > 7 the BM3 EoS
vields lower pressures than the Vinet for a given compression or, equivalently, lower
volumes (larger ) for a given pressure (Fig. 8a). For 3.3 < K’ < 7 the opposite is true,
with the BM3 EoS yielding pressures that are 1.2% higher than the Vinet EoS at ny = 0.80
for K’ = 4, For values of X’ ~ 3.3 and 7 there is no significant divergence to much larger
values of compression (Fig. 8a). The practical result is that within these bounds, fits of the
Vinet and the Birch-Murnaghan 3rd-order EoS to P-V data yield indistinguishable values
for K, and X' (Table 1, also Schlosser and Ferrante 1988, Jeanloz 1988). Therefore the
choice between these two EoS is not significant for compression to 1 ~ 0.85, and values of
K, and X' from a fit in one EoS can be used in the other FoS formalism,
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By contrast the divergence of both the Mumaghan and the 3rd-order Natural Strain
EoS from the BM3 occurs at smaller compressions (Fig. 8b) and the divergence increases
with increasing K'. For the Murnaghan the positive deviation in Figure 8b arises from the
implied value of K" being zero. In the 3rd-order Natural Strain EoS (Eqn. 5) the implied
value of K" is much larger than that of either the Vinet or the BM3 EoS (Eqns. 4 and 8)
which are very similar to one another (e.g. Table 1), and the deviation is therefore negative.
The implications for fitting P-V data with these two EoS is that they provide a significantly
poorer {it to the data, as well as refined values of K and X' that differ significanfly from
the values derived from fits of either the Vinet or the BM3 EoS (e.g Table ). It is also
found that the value of K obtained from the latter is in much better agreement with
independent determinations, for example from measurements of the elasticity {e.g. Angel et
al. 1997). While the fit of the Natural Strain EoS can be improved by extension to the 4th-
order, there is no remedy for the mis-fit of the Murnaghan EoS which should therefore not
be used to fit P-J” data to more than ~10% compression. Similarly, the divergence of these
two EoS from the Vinet and the BM3 means that EoS parameters should not be transferred
to or from the Natural Strain or the Murnaghan EoS (Fig. 1).

PREDICTION OF UNCERTAINTIES

Theory

It is clear from the formulation of all EoS (Eqns. 1-8) that an improvement in the
precision of P,V data by either a reduction in 6, or ¢, will lead to a more precise
determination of the bulk modulus and K. Similarly, because of the non-dimensional form
of all EoS, it is also clear that reduction in the uncertainties of X, and X’ can also be
achieved by either increasing the number of data points or by increasing the pressure range
of the measurements while maintaining the precision of the individual measurements.
However, the relationship between the final uncertainties in K, and X’ and the experimental
parameters of measurement precision (i.e. o, and ), number of data, and pressure range
is not straightforward. Bass et al (1981) therefore developed an algorithm (extended by
Liebermann and Remsberg 1986) that predicts the values of 6, and &,. expected from a
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given set of these experimental parameters, at least for isothermal datasets. The algorithm is
based upon a linearization of the BM3 EoS, and its fitting by the method of linear least-
squares. The method is presented here in a little more detail, together with a few extensions
based on the work of Liebermann and Remsberg (1986) and some corrections to
typographical errors that occur in the appendix of the original paper.

The BM3 EoS (Eqn. 3) can be written as a linear combination of functions of
compression Ty

P=afi(n)+af(M) (27)
where f{n)=(n""-n"")and £(n)=£(n)(n*" 1) and the two coefficients are:

3 3

a ':"Z”Ku a]:Z%(K’rﬂ,) (28)
Equation (27) can then be written in matrix form as P = AF for the whole P,V data-
set, Here, P is a vector of i components, each of which is the pressure of a volume datum.
F is a matrix, the i"th line of which contains the functions f{(V;) and £,(¥V) of the volume ¥,
at each pressure P, and A is a columm vector of the two coefficients a, and a, that are to be
determined. Note that in this formulation, as in the £-F plot, the value of ¥ is assumed to
be known exactly. This is not correct but, as will be demonstrated, reasonable estimates of
the parameter uncertainties are still obtained. The formulation of the BM3 EoS given in
Equation (27) is finear in the parameters g, and a,, so the least-squares solution for the

vector of coefficients A is then given directly (without need for iteration) by

A=(F"WF) FTWP 29)

where W is the weighting matrix, defined as before: its diagonal terms are o;* and its off-
diagonal terms are zero. The variance-covariance matrix for the refined values of the
parameters a, and a, is then

V=(F"WF)' (30)
The variance-covariance matrix for K and K’ is obtained by transforming V" according

to Equation (15). The differentials of the X, and K" required for the transformation are,
from Equation (28):
9K, 2 9K, _ oK' _ Aa, K _ 4 (31)
da, 3’ da, da, 3at’ da, 3a,
and the elements of the variance-covariance matrix for K and K’ are then:

VK,K :2V|.i/3

2 2
4a da 4 4
Vo=V | —21 -V =2 — |3+ ¥V, — 32
fs “[3312} 12(3%;][3{1‘}* 22[351;J (32)
2 4 4da
VK,K’ = E{KZ[EE:] - Vn[ﬁﬂ

The extension of this approach to the BM4 equation of state, or its adaptation to the
Natural Strain or the Vinet EoS in their linear forms is straight-forward, but is not
necessary for compressions up fo ~15% because these EoS result in similar esd’s in the
fitted parameters in this regime (e.g. Table 1), Thus the calculation based upon the BM3
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EoS can be used as a useful proxy for these other EoS. The extension of this analysis to P-
V-T data is however non-trivial, because the thermal expansion coefficient (Eqn. 9) appears
within the functions f; and f; as part of 1.

The practical process of uncertainty estimation proceeds by calculating a set of
synthetic P-}" data from an estimate of the EoS parameters V,, K, and X’. This synthetic
data-set is used to construct the matrix F. Probable uncertainties in o, and o, are also
assigned to each data point, and the total uncertainty 5, for each data point then follows
from Equation (13); this differs from the method of Bass et al. (1981) in that they used K,
instead of the value of X, at each pressure datum to convert the &, to o, through Equation
(13). The nett result is that the uncertainties calculated here are of the order of 20% higher
than those calculated by Bass et al. (1981), and the variation with the number of data in a
data set is slightly different. The diagonal elements of W are then set equal toc;” as usual,
and the calculation of the expected uncertainties follows directly from application of
Equations (30) and (32).

Although any synthetic data-set can be modelled in this way, it is useful to make some
further assumptions in order to automate the process. In the following calculations it will be
assumed that the data are equally spaced in pressure and that the absolute uncertainties in
both pressure and volume are constant over the data-set. Note that this means that the
uncertainty in compression increases with increasing pressure because as ¥ becomes
smalier, ,/V becomes larger, while the fractional uncertainty in pressure decreases. With
these assumptions the agreement between the uncertainties predicted for K, and X’ with
those obtained from fitting experimental data is reasonable {(e.g. Fig. 9). Note that the
calculation does not account for intrinsic uncertainties in the pressure scale itself which, if
accounted for, will increase the uncertainties of both K, and K,
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Figure 9 (left). Comparison of predicted (dashed lines) confidence ellipses with those obtained
by least-squares fitting of experimental data. (a) Quartz -V data from Angel et al, {1997). (b} P-¥
data for braunite from Miletich et al. (1998}. In both cases the experimental vatues for n, K, and
K7 and the average experimental values for ¢/V,, and o, were used in the calculation of the
predicted variance-covatiance matrix through Equations (30)-(32).

Figure 10 (right). Predicted uncertainties in X and X as a function of 6,/V, for a data-set of 10
P-¥ data from a material with K = 100 GPa and K* = 4, measured to & maximum pressure of 50
GPa. Numbers on the plots are ;.
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General results

The general form of the varation of o, and &, with the precision in volume
measurement is shown in Figure 10 (above) for a material with K, = 100 GPa, K" = 4,
measured at 10 equally spaced pressure points up to a maximum of 10 GPa. For o, /¥, =
0.0 the data point uncertainties become (Eqn. 13} equal to ©, alone. Then all of the
elements of ¥ will scale with 6, (Eqn. 30), and the uncertainties in both K, and K” scale
exactly with the uncertainties in pressure. For small uncertainties the volume, essentially up
to ¢, /V, < 6/K, (from Eqn. 13), the final uncertainties in both EoS parameters remain
dominated by the uncertainty in pressure. Modem single-crystal X.ray diffraction
experiments (G, = 0.01 GPa, 6, /F, = 10™; Angel et al,, this volume) fall in this regime for
most crustal minerals (K, <100 GPa). At these levels, halving o, halves 6, while reducing
o, will have very little influence on the final results. However, because oy is already so
small, this reduction amounts to only a 0.1 GPa improvement in the precision of X . Thus
one would conclude that no further useful improvement in precision could be obtained for
an experiment represented by these parameters.

By contrast, for 6,/V, > 26,/K, (Liebermann and Remsberg 1986) the uncertainty in
the volume measurements dominates the experimental constraints on K, and K, and the
curves lie sub-parallel to that for zero pressure uncertainty (Fig. 10). Thus, if data are
measured with o, /¥,=0.001 (=1 part in 1,000) and o, =0.05 GPa then reducing the
pressure measurement uncettainty will only reduce o, at most by 0.2 GPa (Fig. 10b),
whereas improving the precision of the volume measurement by a factor of 2 will halve the
values of 6, and 6. If pressure is being measured by an internal diffraction standard (e.g.
Miletich et al. this volume) then an added bonus will be a reduction in pressure uncertainty
by a factor of 2, and a further reduction in the final uncertainties.

For softer materials measured over the same pressure range there will be a larger
amount of total compression, so the precision in the determined values of K and K’ will be
improved. For 6,/¥, =0 this improvement scales exactly as the bulk modulus, provided K’
remains constant (Fig. 1), and approximately as the bulk modulus for 6,/¥; < ¢,/K,. This
follows because the total compression scales approximately as P, /K. But at larger values

of ¢ /V, the scaling law does not hold
because of the form of Equation (13);

N S L I R o an experiment on the material that is
more compressible by a factor of 2
10 y yields uncertainties about {73 those

obtained from the harder material. If the
pressure derivative of the bulk modulus
is higher, then the total compression

(K"
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materials with different K, and K, measured to a  Significant improvements in the pre-
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Figure 12 (left). Predicted uncertainties in K and K, as a function of the number of equally-
spaced P-V data from a material with K, = 100 GPa, K" = 4 and two values of Op, measuted fo a
maximum pressure of 10 GPa. Values of 6/V, are given on the lower plot,

Figure 13 (right), Predicted uncertainties in K’ and K, as a function of the number of P-F data,
at a fixed interval of 1 GPa from a material with K, = 100 GPa, K’ = 4 and two values of o,.
Values of 6,/V, are given on the lower plot. The maximum pressure of cach experiment in GPa is
equal to the number of data points.

number of measured data inay do so. This may be achieved in two ways. Figure 12 shows
the effect of increasing the number of data, n, measured over the same pressure interval (10
GPa). As the number of data are first increased the uncertainties in the refined parameters
decrease sharply, approximately proportional to n'?, as expected. But for higher values of
n the uncertainties asymptote to a finite value dependent on 6, and G,. Figure 12 shows that
for 6, =0.01 GPa, there is very little to be gained by collecting more than 10 data, while for
experiments with ¢, =0.05 GPa significant improvements can still be made by collecting up
to 20 data. The gain in precision is greater if the pressure range over which the data-set is
collected is increased while maintaining the pressure interval of the data constant at 1.0 GPa
(Fig. 13). Here the scaling law is stronger than »'? (actually about n**) for n < 20 as a
result of the increased maximum compression (contributing ~#) and the increased mumber
of data (contributing ~»'” ). Tn considering the results of these calculations it must be
remembered that they are only intended to act as a guide for elements of experimental
design, such as the number of data points to be collected. It must also be remembered that
the calculations can only reflect the results of experimental precision or reproducibility and
do not include the influence of systematic errors such as inaccuracy in expetimental
pressure scates or the presence of non-hydrostatic stresses.
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APPENDIX

The computer program EOSFIT, written by the author, fits all of the FoS described in
this chapter to P-¥ and P-V-T data, as well as performing fits of cell parameter variations
with P and 7, by the method of non-linear least-squares. Refinements can be run with a
choice of weighting schemes and the parameters to be refined. All staistical measures
described in this chapter are provided as output. EOSFIT, along with a number of subsidary
programs to perform the associated calculations described in this chapter, and the STRAIN
program of Ohashi (1972) are available by e-mail from the author.
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