

The 4D Web Companion

319

C

HAPTER

HTTP Fundamentals

Acknowledgement

Included with permission from

The 4D Web Companion

 by David Adams, published by 4D
Press. For more information visit:

http://www.4dcompanion.com/products/webcompanion/
http://4dpress.4d.com/

Introduction

The HyperText Transfer Protocol (HTTP) defines how Web browsers, Web proxies, and
Web servers should behave and interact. A little bit of knowledge of HTTP goes a long way
when building 4D Web applications. This chapter looks under the surface at what goes
into HTTP requests and responses, to help with tasks like these:

✓

Debugging Web-database sessions.

✓

Understanding how to design and troubleshoot Web applications.

✓

Sending special response codes, like standard Web password challenges.

✓

Reading and writing header fields, like cookies, user names, and passwords.

✓

Writing custom Web serving or Web browsing code with 4D Internet Commands,
or ITK.

The

Parsing Requests

 chapter, which starts on page 377, describes how browsers and serv-
ers pack, transmit, and unpack HTTP messages in detail. The

Debugging HTTP

 chapter,
which starts on page 347, explains how to capture HTTP data for review.

The

Web Core

 demonstration includes code for reading and writing HTTP data.

See the

Web Processing Steps and 4D Features

 chapter, which starts on page 103, for a summary of which 4D
commands and features are designed for each step of the Web-serving process.

General Features of HTTP

HTTP Is Text Based

Programs can send binary data—like PDF files and applications—through HTTP, but HTTP
is itself a plain text protocol, therefore it is easy to read and write. There is generally no
need to translate or encode HTTP information in any way. Below is a typical HTTP request
for a Web page:

GET /bookreviews/webbooks.html HTTP/1.1

This is a typical first line of a successful response from a Web server:

HTTP/1.1 200 OK

47

Chapter 47 - HTTP Fundamentals

320

The 4D Web Companion

These messages are easy to read because they use descriptive text. The disadvantage of a
text-based protocol is that it is not compact. This feature contributes to the overall poor
performance of the Web.

HTTP Is a Request/Response Protocol

In HTTP the client, typically a Web browser, sends a request to a server, and the server
responds. HTTP defines which requests can be sent, which responses can be returned, and
how the request and response messages are formatted. HTTP doesn’t define what is
requested or sent in a reply, or how the request and response are sent over the network.

HTTP Uses TCP/IP

As far as the HTTP protocol is concerned, request and responses are sent and received
magically. Rather than inventing a new low-level protocol, the HTTP specification pre-
sumes that TCP/IP is the underlying transportation mechanism. This feature makes HTTP
easy to implement in high-level languages, and an in-depth knowledge of TCP/IP is not
necessary. Here is a conceptual model of Web communication:

See “Anatomy of HTTP Requests and Responses”, starting on page 321 of this chapter, for a detailed discussion of
HTTP requests and responses. The

Web Core

 database includes code that parses incoming requests into an easy-
to-use format.

HTTP Is Stateless

A protocol can be stateless or stateful. A stateless protocol like HTTP doesn’t retain any
information about clients between requests. A stateful protocol saves information about
clients between requests. 4D Client/Server, for example, remembers current records, cur-
rent selections, locked records, the current user’s name, and operations open in a
transaction. These items are properties of the client’s current state. HTTP doesn’t remem-
ber anything between requests. HTTP’s statelessness makes it, by nature, poorly suited to
building database applications.

Dealing with statelessness is discussed in more detail in the

Managing State

 chapter, which starts on page 405.
The

Contextual Mode Overview

 chapter, which starts on page 195, discussed 4D’s attempt to automatically add
state management to 4D Web systems.

HTTP Is Platform Neutral

HTTP is truly platform-independent. In fact, it’s fair to think of HTTP as a platform. Web
browsers, proxies, and servers are built for individual platforms, but the protocol itself is
the same on all platforms. Web servers exist for every commercial platform in use today,
even mainframes. Web browsers exist for PC operating systems, PDAs, and cell phones.

Web Browser

HTTP

HTTP

Web Server

TCP/IP

The 4D Web Companion

321

Anatomy of HTTP Requests and Responses

Anatomy of HTTP Requests and Responses

Introduction

Web communication consists of requests from Web clients and responses from Web serv-
ers. The most common request is for a page or other document specified in a URL. The
Web browser sends a request, and the Web server replies:

A simple HTTP request-response exchange.

This section explains this process in detail with examples.

HTTP Message Format

Each HTTP request and response has a header and an optional body. The header includes
the request or response and optional header fields. The body of a request may include
form field values and uploaded documents. The body of a response may include a Web
page, PDF file, program, or other document. HTTP can transfer files of any type, as you
will have noticed if you have ever downloaded an application or installer through a Web
browser. These diagrams illustrate the general message structure.

Example Web Page

It’s easier to explain the details of HTTP headers and responses with examples. Here is a
simple Web page shown in a browser:

Web pages are often slow and disappointing. This one is only disappointing.

HTTP/1.1 200 OK

GET /index.htm HTTP/1.1

Web Browser

Web Server

Header

Body

Request line

Header Fields

Form data sent
with POST

HTTP Request

Header

Body

Status line

Header Fields

Web page or
other document

HTTP Response

Chapter 47 - HTTP Fundamentals

322

The 4D Web Companion

This is the HTML for the Web page:

<html>
<head>
<title>Hello World Page</title>
</head>

<body>

Hello world!

</body>
</html>

The HTML controls what the user sees in the browser. The browser and Web server use
HTTP to send the HTML. Here is an example of what the browser sends to request the
page shown above:

GET /hello.htm HTTP/1.1
User-Agent: Mozilla/4.7 (Macintosh; I; PPC)
Host: 198.2.64.127
Accept: image/gif, image/x-xbitmap, image/jpeg, image/png, */*
Accept-Encoding: gzip
Accept-Language: en
Accept-Charset: iso-8859-1

And this is an example of what the Web server sends to the browser in response:

HTTP/1.0 200 OK
Server: 4D_WebStar_D/6.71
Date: Tue, 27 Feb 2001 04:58:21 GMT
Last-Modified: Tue, 27 Feb 2001 04:58:21 GMT
Content-type: text/html;Charset=ISO-8859-1
Content-Length: 102

<html>
<head>
<title>Hello World Page</title>
</head>

<body>

Hello world!

</body>
</html>

The HTTP, both in the request and in the response, is invisible to end users. When a
browser submits a URL and receives back a Web page, the underlying HTTP is handled
internally by the browser and the Web server.

Viewing HTTP

In a native 4D Web application, the HTTP data is not always accessible or easily seen in
the 4D Debugger, so other tools are needed. A stream capture program can copy the data
moving over HTTP through the operating system. Additionally, a packet capture program
can copy all data passing through the computer’s network interface (typically a modem or
Ethernet card.) See the

Debugging HTTP

 chapter, which starts on page 347, for more infor-
mation on stream and packet capture, and analysis tools.

The 4D Web Companion

323

HTTP Requests

HTTP Requests

Requesting a Web Page

The simple Web page request header shown above has two parts: the request line and the
header fields. This section explains how the data is formatted and its use.

The HTTP Request Line

The request line includes three pieces of information:

The Web server—4D in this case—reads the request line to determine how to handle the
request. Depending on which features a Web browser and Web server implement, there
are several possible request types. The table below lists the defined request types and
shows whether 4D supports them.

The table below shows the methods used by various 4D features:

Header fields

Request line

HTTP request line

Name Example Description

Request type

GET

Instructs the server how to process the request.

URI

hello.htm

Specifies what the browser wants.

HTTP version

HTTP/1.0

Indicates the latest version of HTTP the browser supports.

HTTP request types

Type Description 4D Support

GET

A straightforward request for a page or insecure form submission. Supported.

POST

A block of extra data may be sent to the server for processing. Supported.

HEAD

Exactly like

GET

 except that no message body is returned. This request
type is used by proxies and browsers to check if a document has
changed.

Not implemented
completely.

PUT

A resource is uploaded to the server for storage. Not implemented.

DELETE

A resource is deleted on the server. Not implemented.

HTTP methods supported by 4D commands and features

Request Type Supports GET Supports POST Notes

Good URL Link

✓

Bad URL Link

✓

Magic URL Link

✓

4DACTION

Link

✓

Form

✓ ✓

Image

✓

Semi-dynamic callback

N/A N/A

Processed in 4D.

Chapter 47 - HTTP Fundamentals

324

The 4D Web Companion

Semi-dynamic tags are processing instructions embedded within response pages. 4D resolves these tags and
replaces their contents with HTML before serving the result page. Therefore, no HTTP request is involved directly
with these tags.

In 4D 6.7 and later always use

4DSCRIPT

, instead of

4DACTION

, for semi-dynamic method callbacks.

4DACTION

may still be used in links, and image requests, and for form processing.

HTTP Header Fields

HTTP header fields follow a regular format:

Field name+Colon+Space+Field value+Carriage Return+Line Feed

The header ends with a blank line:

Carriage Return+Line Feed+Carriage Return+Line Feed

The extra blank line separates the header and body sections of the HTTP message. Brows-
ers use this break to determine where a result document begins. There are roughly fifty
standard HTTP header fields defined in the

RFC 2616: Hypertext Transfer Protocol -- HTTP/1.1

specification. Apart from the double carriage return and line feed that end the header, any-
thing can be included in an HTTP header. Cookies, for example, are common header items

not

 defined in the HTTP specification.

4D Commands to Read Header Fields

4D 6.7 and later include two commands that read HTTP data directly:

The contents of the HTTP request are also present in $2 of the

On Web Authentication

 and

On Web Connection

 database methods.

See the

Parsing Requests

 chapter, which starts on page 377, for more information about parsing incoming
requests.

4DCGI

Link

✓

Form

✓ ✓

Image

✓

4DMETHOD

Link ✓

Form ✓ ✓

Image ✓

4DHTMLVAR Semi-dynamic tag N/A N/A Processed in 4D.

4DIF Semi-dynamic tag N/A N/A Processed in 4D.

4DINCLUDE Semi-dynamic tag N/A N/A Processed in 4D.

4DLOOP Semi-dynamic tag N/A N/A Processed in 4D.

4DSCRIPT Semi-dynamic callback N/A N/A Processed in 4D.

4DVAR Semi-dynamic tag N/A N/A Processed in 4D.

HTTP methods supported by 4D commands and features (continued)

Request Type Supports GET Supports POST Notes

HTTP reading commands

Command Description

GET HTTP HEADER Parses incoming HTTP headers into name and value arrays.

GET WEB FORM VARIABLES Parses incoming form variables out of URL or POST section of HTTP header.

The 4D Web Companion 325

HTTP Requests

HTTP Header Fields Example

The HTTP request can include any number of header fields after the request line, like the
ones shown here:

User-Agent: Mozilla/4.7 (Macintosh; I; PPC)
Host: 198.2.64.127
Accept: image/gif, image/x-xbitmap, image/jpeg, image/png, */*
Accept-Encoding: gzip
Accept-Language: en
Accept-Charset: iso-8859-1

Header fields are used to send information which the server and the browser need in order
to manage the request. Here is an explanation of the fields shown above:

For more information on MIME types, see the MIME chapter, which starts on page 315. For more information on
the host tag, see “The Host Header Tag”, starting on page 312 of the Working with Paths chapter.

Different browsers include a variety of header fields and different contents for the same
fields. Don’t assume that a specific field is included without testing. The Web Core data-
base includes routines to test if specific header fields or cookies are included in the current
request.

Field Name Field Value Description

User-Agent Mozilla/4.7 Macintosh; I;
PPC)

The HTTP specification employs the term
“user-agents” instead of browsers because Web
clients don’t need to be traditional browsers.

Mozilla is the internal code name for Netscape
browsers. Many non-Netscape browsers iden-
tify themselves as Mozilla for compatibility.

Host 198.2.64.127 The address of the host the request was sent to.

Accept image/gif, image/x-xbit-
map, image/jpeg, image/
png, */*

The document types the browser will accept in
response to this request. These are MIME
(Multipart Internet Mail Extension) file type
codes.

Accept-Encoding gzip The encoding methods the browser will accept
in response to this request. Browsers and serv-
ers can optimize performance by encoding
images and other files in a compressed format.

Accept-Language en The natural languages the browser will accept
in response to this request. The value “en”
stands for English.

Accept-Charset iso-8859-1 The character sets the browser will accept in
response to this request. The Latin-1 character
set is called ISO-8859-1 within an HTTP
request.

Chapter 47 - HTTP Fundamentals

326 The 4D Web Companion

Responding to a Web Page Request

Responding with a Simple Page

The simple Web page request shown above provokes this response:

The response has two parts: the HTTP header and the HTML body. The HTTP header also
has two parts: a status line followed by any number of HTTP headers. The HTTP header
and HTML response are separated by a break. Below we look at the contents of these
parts.

Status Line

All HTTP responses start with a status line that includes the HTTP version used in the
response and a status code describing the results of the request. The response code is the
most useful piece of information on this line. Web servers use status codes to ask the
browser to request a user name and password, send the user to a different page, confirm
that the request was understood, and report problems. There are five categories of HTTP
response codes:

100 Range: Informational

The request was received by the server, and the browser can continue processing.

200 Range: Success

The request was successfully received, understood, and accepted. The most com-
mon responses are 200 OK and 204 No Content.

300 Range: Redirection

Further action must be taken in order to complete the request. Redirection is used
to send users an updated URL or a private URL after authentication.

400 Range: Client Error

The request contains bad syntax or can’t be fulfilled. Common responses in this cat-
egory include 401 Unauthorized (a password challenge) and 404 Not Found.

500 Range: Server Error

The server failed to fulfill an apparently valid request. This situation occurs, for ex-
ample, when a CGI program crashes or times out.

The table below summarizes the response codes defined in RFC 2616 Hypertext Transfer Pro-
tocol -- HTTP 1.1:

Header fields

Status line

Break

Body

The 4D Web Companion 327

Responding to a Web Page Request

HTTP 1.1 status codes

Category Code Description Notes

Informational 100 Continue

101 Switching Protocols

Success 200 OK

201 Created

202 Accepted

203 Non-Authoritative Information

204 No Content

205 Reset Content

206 Partial Content

Redirection 300 Multiple Choices

301 Moved Permanently This header lets you redirect a request from an
old address to a new location or to a secure
location after custom verification.

302 Found

303 See Other

304 Not Modified

305 Use Proxy

307 Temporary Redirect

Client Error 400 Bad Request

401 Unauthorized When a Web server, including 4D, sends this
header to a browser, the browser asks the user
for a user name and password.

402 Payment Required

403 Forbidden

404 Not Found

405 Method Not Allowed

406 Not Acceptable

407 Proxy Authentication Required

408 Request Time-out

409 Conflict

410 Gone

411 Length Required

412 Precondition Failed

413 Request Entity Too Large

414 Request-URI Too Large

415 Unsupported Media Type

416 Requested range not satisfiable

417 Expectation Failed

Server Error 500 Internal Server Error

501 Not Implemented

502 Bad Gateway

503 Service Unavailable

504 Gateway Time-out

505 HTTP Version not supported

Chapter 47 - HTTP Fundamentals

328 The 4D Web Companion

Header Fields

The HTTP response includes any number of header fields. These fields contain informa-
tion that the browser may need to interpret the response. For example, the Content-
Type field tells the browser what the response contains, and the Content-Length field
informs the browser how much data is in the body of the response.

Break

The HTTP response and the response body are divided by a break. Since HTTP is a plain
text protocol, the internal delimiters are nothing more than regular text. The break is the
character sequence Carriage Return+Line Feed+Carriage Return+Line
Feed. If you are composing your own HTTP responses and headers—including cookies—
make sure not to include extra Carriage Return+Line Feed strings.

Body

HTTP can deliver many kinds of documents, including HTML, graphics, and PDF. The
exact contents and length of the body are described in the HTTP response header. The
Web browser, however, handles storing, displaying, or passing the response body to
another program.

4D Commands and HTTP Responses4D includes several commands that read or change
HTTP headers and response codes:

4D commands and HTTP responses

Command Description

SEND HTML BLOB Sets all required content type and length fields and attaches the BLOB
to the message body.

SEND HTML FILE Sets all required content type and length fields and attaches the docu-
ment to the message body.

SEND HTML TEXT Sets all required content type and length fields and attaches the text to
the message body.

SEND HTTP REDIRECT Returns the HTTP 302 Moved temporarily status code
instructing the browser to open a different URL.

On Web Authentication returns False Sends HTTP 401 Unauthorized status code prompting the
browser to ask for a user name and password.

SET HTTP HEADER Adds HTTP header fields to the response.

